Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Cancer Research Conference: American Association for Cancer Research Annual Meeting, ACCR ; 83(7 Supplement), 2023.
Article in English | EMBASE | ID: covidwho-20232118

ABSTRACT

Respiratory viral infections (RVI) such as influenza and COVID19 impact the host systemic immune system along with causing deleterious chronic inflammatory responses and respiratory distress. While the role of chronic inflammation in cancer is well-established, the role of RVI on tumorigenesis is poorly defined. To study the role of RVI on breast cancer, we first infected murine respiratory epithelial cells (mRES) with murine sendai virus (mSV), an analog for human parainfluenza virus. These infected mRES were co-cultured with 4T1 murine breast cancer cells in 1:1 dilution on a single 2D plate and also in trans-well format. Both in co-culture and transwell culture we saw a 40- 80% (p<0.05) increased proliferation of breast cancer cells. Similarly, when 4T1 cells were treated with the supernatant collected from infected mRES cells in 1:5 dilution, also demonstrated a 2.3 fold increased breast cancer cell proliferation. The cytokine analysis from the supernatant collected from infected mRES cells demonstrated a 17-23 fold enhanced secretion of alpha/beta-defensins. Direct treatment of alpha-defensin (cyptidin-4, 10 pg/mL) and beta-defensin-3 (mBD3, 20 pg/mL) on 4T1 cells demonstrated enhanced expression of chemokine metastatic receptor, CXCR4 (4.3 fold), angiogenic factor, VEGF (12.8 fold) and cell division favoring factor, CDK2 (8.1 fold). Further, analysis of infected mRES cells demonstrated upregulation of toll-like receptor 2 (TLR2) and NODlike receptor protein 3 (NLRP3) expression. Interesting, co-cultured of infected mRES with syngeneic murine CD4 T cells induced exhaustion phenotype (PD1+ and CTLA4+ ) differentiation of CD4 T cells. Taken together, these data suggest that respiratory viral infections through induction of cancer cell proliferation and inhibiting anti-tumor adaptive immune responses promote breast cancer proliferation.

2.
Front Cell Infect Microbiol ; 11: 751232, 2021.
Article in English | MEDLINE | ID: covidwho-1506821

ABSTRACT

Understanding of the basis for severity and fatal outcome of SARS-CoV-2 infection is of paramount importance for developing therapeutic options and identification of prognostic markers. So far, accumulation of neutrophils and increased levels of pro-inflammatory cytokines are associated with disease severity in COVID-19 patients. In this study, we aimed to compare circulatory levels of neutrophil secretory proteins, alpha-defensins (DEFA1), calprotectin (S100A8/A9), and myeloperoxidase (MPO) in COVID-19 patients with different clinical presentations. We studied 19 healthy subjects, 63 COVID-19 patients with mild (n=32) and severe (n=31) disease, 23 asymptomatic individuals identified through contact tracing programme and 23 recovering patients (1-4 months post-disease). At the time of disease presentation, serum levels of DEFA1 were significantly higher in patients with mild (mean230 ± 17, p<0.0001) and severe (mean452 ± 46, p<0.0001) disease respectively in comparison to healthy subjects (mean113 ± 11). S100A8/A9 proteins were significantly higher in COVID-19 patients (p<0.0001) irrespective of disease severity. The levels of DEFA1, S100A8/A9 and MPO reduced to normal in recovering patients and comparable to healthy subjects. Surprisingly, DEFA1 levels were higher in severe than mild patients in first week of onset of disease (p=0.004). Odds-ratio analysis showed that DEFA1 could act as potential biomarker in predicting disease severity (OR=11.34). In addition, levels of DEFA1 and S100A8/A9 were significantly higher in patients with fatal outcome (p=0.004 and p=0.03) respectively. The rise in DEFA1 levels was independent of secondary infections. In conclusion, our data suggest that induction of elevated levels of alpha-defensins and S100A8/A9 is associated with poor disease outcome in COVID-19 patients.


Subject(s)
COVID-19 , alpha-Defensins , Humans , Leukocyte L1 Antigen Complex , Neutrophils , Peroxidase , SARS-CoV-2 , Severity of Illness Index
3.
J Med Virol ; 93(4): 2090-2098, 2021 04.
Article in English | MEDLINE | ID: covidwho-1227749

ABSTRACT

BACKGROUND: Many laboratory parameters have been associated with morbidity and mortality in SARS-CoV-2 (COVID-19), which emerged in an animal market in Wuhan, China in December 2019 and has infected over 20 million people. This study investigated the relationship between serum interleukin (IL)-18, IL-1 receptor antagonist (IL-1Ra), and alpha defensin levels and the clinical course and prognosis of COVID-19. MATERIALS AND METHODS: This study included 100 patients who were admitted to the chest diseases department and intensive care unit of our hospital and diagnosed with COVID-19 by real-time polymerase chain reaction (PCR) of nasopharyngeal swab samples between March 24 and May 31, 2020. The control group consisted of 50 nonsymptomatic health workers with negative real-time PCR results in routine COVID-19 screening in our hospital. RESULTS: Serum alpha defensin, IL-1Ra, and IL-18 levels were significantly higher in patients who developed macrophage activation syndrome (MAS) and acute respiratory distress syndrome (ARDS) compared to patients who did not (p < .001 for all). Alpha defensin, IL-1Ra, and IL-18 levels were significantly higher in COVID-19 patients with and without MAS or ARDS when compared to the control group (p < .001 for all). When the 9 patients who died were compared with the 91 surviving patients, IL-1Ra and IL-18 levels were found to be significantly higher in the nonsurvivors (p < .001). CONCLUSION: Our findings of correlations between alpha defensin and levels of IL-1Ra and IL-18, which were previously shown to be useful in COVID-19 treatment and follow-up, indicates that it may also be promising in treatment.


Subject(s)
COVID-19/immunology , Interleukin 1 Receptor Antagonist Protein/blood , Interleukin-18/blood , Macrophage Activation Syndrome/virology , Respiratory Distress Syndrome/virology , alpha-Defensins/blood , Adult , Aged , Aged, 80 and over , COVID-19/epidemiology , Female , Humans , Male , Middle Aged , Prognosis , Turkey
SELECTION OF CITATIONS
SEARCH DETAIL